Models

AI models are computer programs that analyze and find patterns in data to make predictions. Learn more about some of the notable models in the field.

In the heart of every AI system lies a model, acting as the brain, interpreting data, making predictions, and driving intelligent actions.

Foundation and Evolution:

Embark on a historical journey through AI modeling:

  • Early Designs: Explore models that laid the groundwork for AI, from perceptrons to basic neural networks.

  • Learning Paradigms: Understand the diverse learning strategies, be it supervised, unsupervised, or reinforcement learning.

Modern Marvels:

Navigate the contemporary world of AI modeling:

  • Deep Learning: Delve into the depths of convolutional neural networks, recurrent networks, and their multifaceted applications.

  • Transformers & Beyond: Uncover the architecture and power behind revolutionary models like GPT, BERT, and their successors.

Challenges and Frontiers:

Engage with the complexities and the future of AI modeling:

  • Overfitting & Generalization: Tackle the dichotomy of model specificity and adaptability.

  • Interpretable AI: Grasp the push for models that are not just smart but also transparent and explainable.

The "Models" section promises a voyage from the foundational pillars of AI modeling to the cutting-edge structures that are redefining what machines can achieve.

Back to Glossary Home
Metacognitive Learning ModelsAI and MedicineGroundingProbabilistic Models in Machine LearningKnowledge DistillationInference EngineEmergent BehaviorDouble DescentBayesian Machine LearningBatch Gradient DescentVoice CloningHomograph DisambiguationGrapheme-to-Phoneme Conversion (G2P)Deep LearningArticulatory SynthesisAI Voice AgentsAI AgentsText-to-Speech ModelsNeural Text-to-Speech (NTTS)Pooling (Machine Learning)PretrainingMachine Learning in Algorithmic TradingTest Data SetBias-Variance TradeoffLearning RateLogitsInductive BiasContinuous Learning SystemsSupervised LearningAutoregressive ModelAuto ClassificationHidden LayerMultitask Prompt TuningMulti-task LearningMachine Learning NeuronSemi-Supervised LearningRectified Linear Unit (ReLU)Validation Data SetIncremental LearningDiffusionClustering AlgorithmsFew Shot LearningMachine Learning Life Cycle ManagementNamed Entity RecognitionAI RobustnessInformation RetrievalAugmented IntelligenceCollaborative FilteringCognitive ArchitecturesAI PrototypingAI and Big DataAI ScalabilityAI LiteracyMachine Learning BiasImage RecognitionAI ResilienceSynthetic Data for AI TrainingObjective FunctionData DriftSelf-healing AISpike Neural NetworksHuman-centered AIFederated LearningUncertainty in Machine LearningParametric Neural Networks Limited Memory AINaive Bayes ClassifierAI TransparencyHuman-in-the-Loop AIMachine Learning PreprocessingAI PrivacyMulti-Agent SystemsGenerative Teaching NetworksAI InterpretabilityAI RegulationHuman Augmentation with AIFeature Store for Machine LearningDecision IntelligenceChatbotsQuantum Machine Learning AlgorithmsComputational PhenotypingCounterfactual Explanations in AIContext-Aware ComputingInstruction TuningAI SimulationEthical AIAI OversightAI SafetySymbolic AIAI GuardrailsComposite AIGradient ClippingGenerative Adversarial Networks (GANs)Rule-Based AIAI AssistantsActivation FunctionsDall-EPrompt EngineeringHyperparametersAI and EducationChess botsMidjourney (Image Generation)DistilBERTMistralXLNetBenchmarkingLlama 2Sentiment AnalysisLLM CollectionChatGPTMixture of ExpertsLatent Dirichlet Allocation (LDA)RoBERTaRLHFMultimodal AITransformersWinnow Algorithmk-ShinglesFlajolet-Martin AlgorithmCURE AlgorithmOnline Gradient DescentZero-shot Classification ModelsCurse of DimensionalityBackpropagationDimensionality ReductionMultimodal LearningGaussian ProcessesAI Voice TransferGated Recurrent UnitPrompt ChainingApproximate Dynamic ProgrammingAdversarial Machine LearningDeep Reinforcement LearningSpeech-to-text modelsFeedforward Neural NetworkBERTGradient Boosting Machines (GBMs)Retrieval-Augmented Generation (RAG)PerceptronOverfitting and UnderfittingMachine LearningLarge Language Model (LLM)Graphics Processing Unit (GPU)Diffusion ModelsClassificationTensor Processing Unit (TPU)Natural Language Processing (NLP)Google's BardOpenAI WhisperSequence ModelingPrecision and RecallSemantic KernelFine Tuning in Deep LearningGradient ScalingAlphaGo ZeroCognitive MapKeyphrase ExtractionMultimodal AI Models and ModalitiesHidden Markov Models (HMMs)AI HardwareNatural Language Generation (NLG)Natural Language Understanding (NLU)TokenizationWord EmbeddingsAI and FinanceAlphaGoAI Recommendation AlgorithmsBinary Classification AIAI Generated MusicNeuralinkAI Video GenerationOpenAI SoraHooke-Jeeves AlgorithmMambaCentral Processing Unit (CPU)Generative AIRepresentation LearningAI in Customer ServiceConditional Variational AutoencodersConversational AIPackagesModelsFundamentalsDatasetsTechniquesAI Lifecycle ManagementAI MonitoringMachine TranslationMLOpsMonte Carlo LearningPrincipal Component AnalysisReproducibility in Machine LearningRestricted Boltzmann MachinesSupport Vector Machines (SVM)Topic ModelingVanishing and Exploding GradientsData LabelingF1 Score in Machine LearningExpectation MaximizationBeam Search AlgorithmEmbedding LayerDifferential PrivacyData PoisoningCausal InferenceCapsule Neural NetworkAttention MechanismsDomain AdaptationEvolutionary AlgorithmsContrastive LearningExplainable AIAffective AISemantic NetworksData AugmentationConvolutional Neural NetworksCognitive ComputingEnd-to-end LearningPrompt TuningModel DriftNeural Radiance FieldsRegularizationNatural Language Querying (NLQ)Foundation ModelsForward PropagationF2 ScoreAI EthicsTransfer LearningAI AlignmentWhisper v3Whisper v2Semi-structured dataAI HallucinationsMatplotlibNumPyScikit-learnSciPyKerasTensorFlowSeaborn Python PackagePyTorchNatural Language Toolkit (NLTK)PandasEgo 4DThe PileCommon Crawl DatasetsSQuADIntelligent Document ProcessingHyperparameter TuningMarkov Decision ProcessGraph Neural NetworksNeural Architecture SearchAblationModel InterpretabilityOut-of-Distribution DetectionRecurrent Neural NetworksActive Learning (Machine Learning)Imbalanced DataLoss FunctionUnsupervised LearningAdaGradAcoustic ModelsConcatenative SynthesisCandidate SamplingComputational CreativityAI Emotion RecognitionKnowledge Representation and ReasoningAI Speech EnhancementEco-friendly AIMetaheuristic AlgorithmsStatistical Relational LearningDeepfake DetectionOne-Shot LearningSemantic Search AlgorithmsArtificial Super IntelligenceComputational LinguisticsComputational SemanticsPart-of-Speech TaggingRandom ForestNeural Style TransferNeuroevolutionAssociation Rule LearningAutoencoderData ScarcityDecision TreeEnsemble LearningEntropy in Machine LearningCorpus in NLPConfirmation Bias in Machine LearningConfidence Intervals in Machine LearningCross Validation in Machine LearningAccuracy in Machine LearningClustering in Machine LearningBoosting in Machine LearningEpoch in Machine LearningFeature LearningFeature SelectionGenetic Algorithms in AIGround Truth in Machine LearningHybrid AIAI DetectionAI StandardsAI SteeringImageNetLearning To RankApplications
AI Glossary Categories
Categories
AlphabeticalAlphabetical
Alphabetical