Techniques

Dive into the 'Techniques' section and unravel the intricate processes powering AI's magic. From the nuances of data preparation to the prowess of transformers, journey through the stages that bring AI to life.

Artificial intelligence is anchored by a vast array of techniques that define its functionality and capabilities.

Model Development:

Dive into the stages of AI model progression:

  • Data Handling: Grasp the intricacies of sourcing, cleaning, and preprocessing data—the foundation of any AI system.

  • Training & Validation: Understand the balance of model learning, the art of avoiding overfitting, and the pursuit of generality.

  • Deployment & Scaling: Discover how trained models are seamlessly integrated into real-world applications and scaled to handle vast datasets.

Architectural Explorations:

Venture into the blueprint of AI systems:

  • Classical Models: Revisit the foundational architectures that paved the way, from decision trees to support vector machines.

  • Neural Networks: Dive deep into the layers of perceptrons, convolutional networks, and recurrent models.

  • Transformative Designs: Encounter advanced structures like transformers, responsible for breakthroughs such as GPT and BERT.

For both budding AI enthusiasts and seasoned experts, the "Techniques" section serves as a bridge to the underlying processes and methods that make AI the formidable force it is today.

Back to Glossary Home
Metacognitive Learning ModelsAI and MedicineGroundingProbabilistic Models in Machine LearningKnowledge DistillationInference EngineEmergent BehaviorDouble DescentBayesian Machine LearningBatch Gradient DescentVoice CloningHomograph DisambiguationGrapheme-to-Phoneme Conversion (G2P)Deep LearningArticulatory SynthesisAI Voice AgentsAI AgentsText-to-Speech ModelsNeural Text-to-Speech (NTTS)Pooling (Machine Learning)PretrainingMachine Learning in Algorithmic TradingTest Data SetBias-Variance TradeoffLearning RateLogitsInductive BiasContinuous Learning SystemsSupervised LearningAutoregressive ModelAuto ClassificationHidden LayerMultitask Prompt TuningMulti-task LearningMachine Learning NeuronSemi-Supervised LearningRectified Linear Unit (ReLU)Validation Data SetIncremental LearningDiffusionClustering AlgorithmsFew Shot LearningMachine Learning Life Cycle ManagementNamed Entity RecognitionAI RobustnessInformation RetrievalAugmented IntelligenceCollaborative FilteringCognitive ArchitecturesAI PrototypingAI and Big DataAI ScalabilityAI LiteracyMachine Learning BiasImage RecognitionAI ResilienceSynthetic Data for AI TrainingObjective FunctionData DriftSelf-healing AISpike Neural NetworksHuman-centered AIFederated LearningUncertainty in Machine LearningParametric Neural Networks Limited Memory AINaive Bayes ClassifierAI TransparencyHuman-in-the-Loop AIMachine Learning PreprocessingAI PrivacyMulti-Agent SystemsGenerative Teaching NetworksAI InterpretabilityAI RegulationHuman Augmentation with AIFeature Store for Machine LearningDecision IntelligenceChatbotsQuantum Machine Learning AlgorithmsComputational PhenotypingCounterfactual Explanations in AIContext-Aware ComputingInstruction TuningAI SimulationEthical AIAI OversightAI SafetySymbolic AIAI GuardrailsComposite AIGradient ClippingGenerative Adversarial Networks (GANs)Rule-Based AIAI AssistantsActivation FunctionsDall-EPrompt EngineeringHyperparametersAI and EducationChess botsMidjourney (Image Generation)DistilBERTMistralXLNetBenchmarkingLlama 2Sentiment AnalysisLLM CollectionChatGPTMixture of ExpertsLatent Dirichlet Allocation (LDA)RoBERTaRLHFMultimodal AITransformersWinnow Algorithmk-ShinglesFlajolet-Martin AlgorithmCURE AlgorithmOnline Gradient DescentZero-shot Classification ModelsCurse of DimensionalityBackpropagationDimensionality ReductionMultimodal LearningGaussian ProcessesAI Voice TransferGated Recurrent UnitPrompt ChainingApproximate Dynamic ProgrammingAdversarial Machine LearningDeep Reinforcement LearningSpeech-to-text modelsFeedforward Neural NetworkBERTGradient Boosting Machines (GBMs)Retrieval-Augmented Generation (RAG)PerceptronOverfitting and UnderfittingMachine LearningLarge Language Model (LLM)Graphics Processing Unit (GPU)Diffusion ModelsClassificationTensor Processing Unit (TPU)Natural Language Processing (NLP)Google's BardOpenAI WhisperSequence ModelingPrecision and RecallSemantic KernelFine Tuning in Deep LearningGradient ScalingAlphaGo ZeroCognitive MapKeyphrase ExtractionMultimodal AI Models and ModalitiesHidden Markov Models (HMMs)AI HardwareNatural Language Generation (NLG)Natural Language Understanding (NLU)TokenizationWord EmbeddingsAI and FinanceAlphaGoAI Recommendation AlgorithmsBinary Classification AIAI Generated MusicNeuralinkAI Video GenerationOpenAI SoraHooke-Jeeves AlgorithmMambaCentral Processing Unit (CPU)Generative AIRepresentation LearningAI in Customer ServiceConditional Variational AutoencodersConversational AIPackagesModelsFundamentalsDatasetsTechniquesAI Lifecycle ManagementAI MonitoringMachine TranslationMLOpsMonte Carlo LearningPrincipal Component AnalysisReproducibility in Machine LearningRestricted Boltzmann MachinesSupport Vector Machines (SVM)Topic ModelingVanishing and Exploding GradientsData LabelingF1 Score in Machine LearningExpectation MaximizationBeam Search AlgorithmEmbedding LayerDifferential PrivacyData PoisoningCausal InferenceCapsule Neural NetworkAttention MechanismsDomain AdaptationEvolutionary AlgorithmsContrastive LearningExplainable AIAffective AISemantic NetworksData AugmentationConvolutional Neural NetworksCognitive ComputingEnd-to-end LearningPrompt TuningModel DriftNeural Radiance FieldsRegularizationNatural Language Querying (NLQ)Foundation ModelsForward PropagationF2 ScoreAI EthicsTransfer LearningAI AlignmentWhisper v3Whisper v2Semi-structured dataAI HallucinationsMatplotlibNumPyScikit-learnSciPyKerasTensorFlowSeaborn Python PackagePyTorchNatural Language Toolkit (NLTK)PandasEgo 4DThe PileCommon Crawl DatasetsSQuADIntelligent Document ProcessingHyperparameter TuningMarkov Decision ProcessGraph Neural NetworksNeural Architecture SearchAblationModel InterpretabilityOut-of-Distribution DetectionRecurrent Neural NetworksActive Learning (Machine Learning)Imbalanced DataLoss FunctionUnsupervised LearningAdaGradAcoustic ModelsConcatenative SynthesisCandidate SamplingComputational CreativityAI Emotion RecognitionKnowledge Representation and ReasoningAI Speech EnhancementEco-friendly AIMetaheuristic AlgorithmsStatistical Relational LearningDeepfake DetectionOne-Shot LearningSemantic Search AlgorithmsArtificial Super IntelligenceComputational LinguisticsComputational SemanticsPart-of-Speech TaggingRandom ForestNeural Style TransferNeuroevolutionAssociation Rule LearningAutoencoderData ScarcityDecision TreeEnsemble LearningEntropy in Machine LearningCorpus in NLPConfirmation Bias in Machine LearningConfidence Intervals in Machine LearningCross Validation in Machine LearningAccuracy in Machine LearningClustering in Machine LearningBoosting in Machine LearningEpoch in Machine LearningFeature LearningFeature SelectionGenetic Algorithms in AIGround Truth in Machine LearningHybrid AIAI DetectionAI StandardsAI SteeringImageNetLearning To RankApplications
AI Glossary Categories
Categories
AlphabeticalAlphabetical
Alphabetical